4.7 Article

Ethyl cellulose based self-healing adhesives synthesized via RAFT and aromatic schiff-base chemistry

Journal

CARBOHYDRATE POLYMERS
Volume 250, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2020.116846

Keywords

Adhesives; Ethyl cellulose; Schiff base; Self-Healing; Vanillin

Funding

  1. National Natural Science Foundation of China [31890774]
  2. National Key R&D Program of China [2017YFE0106800]
  3. Jiangsu Key Laboratory for Biomass Energy and Materials [JSBEM-S-201901]

Ask authors/readers for more resources

In this work, reversible addition-fragmentation chain transfer (RAFT) polymerization and Schiff base chemistry was combined to fabricate self-healing adhesives. An esterification reaction was first performed to prepare ethyl cellulose based macroinitiators. Then, a grafting from RAFT of vanillin methacrylate and lauryl methacrylate was used to obtain graft copolymers. DSC result showed that the glass transition temperature was manipulated via changing the ratio of vanillin and fatty acids moieties. NMR spectrum analysis demonstrated the presence of aldehyde groups, which were available for the dynamic crosslinking to generate a network as self-healing adhesives. The adhesive test showed that the shear strength could reach 0.81 MPa with a self-healing efficiency of 98.7 %. The bottlebrush structures of copolymers and reversibility of Schiff base chemistry might collaboratively contribute to the high self-healing efficiency. This study provides a facile way to fabricate high-performance self-healing adhesives from ethyl cellulose and renewable resources.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available