4.7 Article

Mutational and phenotypic characterization of hereditary hemorrhagic telangiectasia

Journal

BLOOD
Volume 136, Issue 17, Pages 1907-1918

Publisher

AMER SOC HEMATOLOGY
DOI: 10.1182/blood.2019004560

Keywords

-

Categories

Funding

  1. NIHR BioResource Scheme [NIHR RG65966]
  2. NIHR Imperial Biomedical Research Centre
  3. Margaret Straker Memorial Trust
  4. Averil Macdonald Memorial Fund
  5. Wellcome Trust [TF/037257, AF/053286, RBAG/342]
  6. British Heart Foundation [PG/2000067, FS/04/089, PG/09/041/27515, RBAG/245, RBAG/208, RBAG/226]
  7. NIHR BioResource-Rare Diseases [NIHR RG65966]
  8. NHS Higher Specialist Scientist Training trainee by Health Education England
  9. NIHR BioResource-Rare Diseases (NIHR) [NIHR RG65966, RG65966, RBAG/181]
  10. European Commission [RBAG/344]
  11. Medical Research Council [RBAG/285, RBAG/295]
  12. NHS Blood and Transplant [RBAG/142]
  13. Swedish Research Council [2016-03999]
  14. Center for Innovative Medicine [2-537/2014]
  15. Karolinska Institutet research foundations [2018-02166]
  16. Swedish Research Council [2016-03999] Funding Source: Swedish Research Council
  17. Vinnova [2016-03999] Funding Source: Vinnova

Ask authors/readers for more resources

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular dysplasia. Care delivery for HHT patients is impeded by the need for laborious, repeated phenotyping and gaps in knowledge regarding the relationships between causal DNA variants in ENG, ACVRL1, SMAD4 and GDF2, and clinical manifestations. To address this, we analyzed DNA samples from 183 previously uncharacterized, unrelated HHT and suspected HHT cases using the ThromboGenomics high-throughput sequencing platform. We identified 127 rare variants across 168 heterozygous genotypes. Applying modified American College of Medical Genetics and Genomics Guidelines, 106 variants were classified as pathogenic/likely pathogenic and 21 as nonpathogenic (variant of uncertain significance/benign). Unlike the protein products of ACVRL1 and SMAD4, the extracellular ENG amino acids are not strongly conserved. Our inferences of the functional consequences of causal variants in ENG were therefore informed by the crystal structure of endoglin. We then compared the accuracy of predictions of the causal gene blinded to the genetic data using 2 approaches: subjective clinical predictions and statistical predictions based on 8 Human Phenotype Ontology terms. Both approaches had some predictive power, but they were insufficiently accurate to be used clinically, without genetic testing. The distributions of red cell indices differed by causal gene but not sufficiently for clinical use in isolation from genetic data. We conclude that parallel sequencing of the 4 known HHT genes, multidisciplinary team review of variant calls in the context of detailed clinical information, and statistical and structural modeling improve the prognostication and treatment of HHT.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available