4.5 Article

Amorphous Polyphosphate and Ca-Carbonate Nanoparticles Improve the Self-Healing Properties of both Technical and Medical Cements

Journal

BIOTECHNOLOGY JOURNAL
Volume 15, Issue 12, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/biot.202000101

Keywords

amorphous calcium carbonate; cement; inorganic polyphosphate; nano; microparticles; self-healing

Funding

  1. ERC Advanced Investigator Grant [268476]
  2. ERC [324564, 662486, 767234]
  3. European Commission [604036, 760858]
  4. BiomaTiCS research initiative of the University Medical Center, Mainz
  5. European Research Council (ERC) [662486, 767234, 324564, 268476] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

Cement is used both as a construction material and for medical applications. Previously, it has been shown that the physiological polymer inorganic polyphosphate (polyP) is morphogenetically active in regeneration of skin, bone, and cartilage. The present study investigates the question if this polymer is also a suitable additive to improve the self-healing capacity not only of construction cement but also of inorganic bone void fillers. For the application in the cement, two different polyP-based amorphous nanoparticles (NP) are prepared, amorphous Ca-polyP NP and amorphous Ca-carbonate (ACC) NP. The particles are integrated into poly(methyl methacrylate) in a concentration ratio of 1:10. This material applied onto Portland cement blocks either by brush application or by blow spinning strongly accelerates the self-healing property of the cement after a 10 day incubation period. Most likely, this process depends on bacteria and their membrane-associated alkaline phosphatase, resulting in the formation of calcite from ACC. In a second approach, polyP is integrated into a calcium-silicate-based cement used in reconstitutive medicine. Subsequently, the cement becomes softer and more elastic. The data show that bioinspired polyP/ACC NP are suitable additives to improve the self-healing of construction cement and to biologize bone cement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available