4.8 Article

Metabolic engineering of Pseudomonas putida for the production of various types of short-chain-length polyhydroxyalkanoates from levulinic acid

Journal

BIORESOURCE TECHNOLOGY
Volume 309, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2020.123332

Keywords

Biopolymer; Levulinic acid catabolism; PHA synthase; Polyhydroxyalkanoates; Pseudomonas putida

Funding

  1. Industrial Strategic Technology Development Program of the Ministry of Trade, Industry & Energy (MOTIE, Korea) [10077308]
  2. Next-Generation BioGreen 21 Program - Ministry of Agriculture, Food and Rural Affairs (SSAC) [PJ01345701]
  3. Korea Evaluation Institute of Industrial Technology (KEIT) [10077308] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Poly(3-hydroxybutyrate), a short-chain-length polyhydroxyalkanoate (scl-PHA), is considered as a good alternative to conventional synthetic plastics. However, various biopolymers with diverse characteristics are still in demand. In this study, four different types of scl-PHA were successfully produced by engineering levulinic acid (LA) utilization metabolic pathway and expressing heterologous PHA synthase (PhaEC), acetyl-CoA acetyltransferase (PhaA), and acetyl-CoA reductase (PhaB) in Pseudomonas putida EM42. Poly(3-hydroxybutyrate-co-3hydroxyvalerate) [P(3HB-co-3HV)], poly(3-hydroxyvalerate-co-4-hydroxyvalerate) [P(3HV-co-4HV)] and poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxyvalerate) [P(3HB-co-3HV-co-4HV)] were produced by the natural LA pathway, poly(4-hydroxyvalerate) by lvaAB-deleted LA pathway, and P(3HV-co-4HV) and P(3HBco-3HV-co-4HV) with relatively high 3HV by fadB-deleted LA pathway. PHA with different monomer fractions could be produced using different PHA synthases. Scl-PHA contents reached approximately 40% of cell dry mass under non-optimized flask culture. This demonstrates that the LA catabolic pathway may be a good alternative route to provide monomers for the production of various types of PHA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available