4.8 Article

Mechanism of allethrin biodegradation by a newly isolated Sphingomonas trueperi strain CW3 from wastewater sludge

Journal

BIORESOURCE TECHNOLOGY
Volume 305, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2020.123074

Keywords

Allethrin; Sphingomonas trueperi strain CW3; Degradation pathway; Bioaugmentation

Funding

  1. Key Area Research and Development Program of Guangdong Province [2018B020206001]
  2. National Natural Science Foundation of China [31401763]
  3. Guangdong Special Branch Plan for Young Talent with Scientific and Technological Innovation [2017TQ04N026]

Ask authors/readers for more resources

The main aim of this study was to investigate and characterize the bacterial strain that has the potential to degrade allethrin. The isolated strain, Sphingomonas trueperi CW3, degraded allethrin (50 mg L-1) in batch experiments within seven days. The Box-Behnken design optimized allethrin degradation and had a confirmation of 93% degradation at pH 7.0, at a temperature of 30 degrees C and an inocula concentration of 100 mg L-1. The results from gas chromatography and mass spectrometry analysis confirmed the existence of nine metabolites from the degradation of allethrin with strain CW3. The cleavage of the ester bond, followed by the degradation of the five-carbon rings, was allethrin's primary degradation pathway. The strain CW3 also degraded other widely applied synthetic pyrethroids such as cyphenothrin, bifenthrin, permethrin, tetramethrin, beta-cypermethrin and chlorempenthrin. Furthermore, in experiments performed with sterilized soil, strain CW3 based bioaugmentation effectively removed allethrin at a significantly reduced half-life.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available