4.7 Article

Biogenic synthesis of silica nanoparticles from corn cobs husks. Dependence of the productivity on the method of raw material processing

Journal

BIOORGANIC CHEMISTRY
Volume 99, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bioorg.2020.103773

Keywords

Biorefining; Corn cobs husks; Fusarium culmorum; Silica nanoparticles

Funding

  1. Polish Ministry of Science and Higher Education for the Faculty of Chemistry of Wroclaw University of Science and Technology

Ask authors/readers for more resources

Corn processing generates thousands of tons of cob husks, which still contains many valuable elements. To make the most of these wastes, they are applied as substrates for biotransformation's procedures. This approach allowed converting or releasing, the elements deposited in the plant material and obtaining valuable products. Thus bioconversion of corn cob husks (CCH) using a fungus of the Fusarium culmorum genus resulted in obtaining silica nanoparticles of defined size and morphology. SEM analysis excluded their presence on the surface of the substrate. FTIR confirmed the presence of siloxane bonds and O-Si-O bonds in post-biotransformation fluid. Using the Heteropoly Blue Method, it was checked that the highest concentration of silica during 16-day biotransformation falls on the 7th day of the process, in which both the substrate sterilization and the process of the biocatalyst starvation were of key importance. Using the STEM and EDX analysis, it was proved that the obtained nanoparticles with a spherical form are structured and their dimensions are similar to 40 and similar to 70 nm. ICP-OES proved that the overall process efficiency was 47%. Such nanoparticles can be successfully used in the medical industry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available