4.7 Article

Multi-Arm Star-Shaped Glycopolymers with Precisely Controlled Core Size and Arm Length

Journal

BIOMACROMOLECULES
Volume 21, Issue 9, Pages 3736-3744

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.biomac.0c00838

Keywords

-

Ask authors/readers for more resources

Star-shaped glycopolymers provide very high binding activities toward lectins. However, a straightforward synthesis method for the preparation of multi-arm glycopolymers in a one-pot approach has been challenging. Herein, we report a rapid synthesis of well-defined multi-arm glycopolymers via Cu(0)-mediated reversible deactivation radical polymerization in aqueous media. D-Mannose acrylamide has been homo- and copolymerized with NIPAM to provide linear arms and then core cross-linked with a bisacrylamide monomer. Thus, the arm length and core size of multi-arm glycopolymers were tuned. Moreover, the stability of multi-arm glycopolymers was investigated, and degradation reactions under acidic or basic conditions were observed. The binding activities of the obtained multi-arm glycopolymers with mannose-specific human lectins, DC-SIGN and MBL, were investigated via surface plasmon resonance spectroscopy. Finally, the encapsulation ability of multi-arm glycopolymers was examined using DHA and Saquinavir below and above the lower critical solution temperature (LCST) of P(NIPAM).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available