4.6 Article

Different mechanisms of cisplatin resistance development in human lung cancer cells

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2020.07.040

Keywords

Cisplatin; A549; SBC-3; xCT; SOX2; Resistance

Ask authors/readers for more resources

Cisplatin (CDDP) is a highly potent and important anticancer drug in lung cancer treatment. Long-term use of an anticancer agent causes resistance in cancer cells, and CDDP resistance involves multiple mechanisms. As the mechanism of resistance development differs depending on the cancer cell types, we aimed to evaluate the detailed mechanism of resistance to CDDP in two types of lung cancer cells: SBC-3 and A549 cells. The CDDP-resistant SBC-3/DDP and A549/DDP cells were established through continuous treatment with a gradually increasing dose of CDDP. The viability of SBC-3/DDP and A549/DDP cells treated with CDDP was 3.68 and 2.08 times higher than that of the respective parental cells. Moreover, SBC-3/DDP cells showed significantly increased cystine/glutamate transporter (xCT) mRNA level, and A549/DDP cells showed markedly increased sex determining region Y-box 2 (SOX2) mRNA level. Moreover, the uptake of cystine, a substrate of xCT, was higher in SBC-3/DDP cells than in SBC-3 cells, and cystine uptake in A549/DDP cells was not different from that in A549 cells. In addition, co-treatment with CDDP and sulfasalazine, an xCT inhibitor, showed lower the concentration of 50% inhibition for cell viability than CDDP alone in SBC-3 and SBC-3/DDP cells, but not in A549 and A549/DDP cells. Furthermore, SBC-3 cells transiently overexpressing xCT were resistant to CDDP, and xCT knockdown in A549/ DDP cells did not significantly change the level of SOX2 mRNA and viability of cells upon CDDP treatment. In conclusion, the two lung cancer cell lines showed different mechanisms of resistance to CDDP. (c) 2020 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available