4.6 Article

Modulation of acid-sensing ion channels by hydrogen sulfide

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2020.04.092

Keywords

Acid-sensing ion channel; Hydrogen sulfide; Nitric oxide; Sulfhydration; Nitrosylation

Funding

  1. SERB (Department of Science and Technology), Government of India

Ask authors/readers for more resources

Acid-sensing ion channels (ASICs) have been implicated in many physiological and patho-physiological processes like synaptic plasticity, inflammation, pain perception, stroke-induced brain damage and, drug-seeking behaviour. Although ASICs have been shown to be modulated by gasotransmitters like nitric oxide (NO), their regulation by hydrogen sulfide (H2S) is not known. Here, we present strong evidence that H2S potentiates ASICs-mediated currents. Low pH-induced current in Chinese hamster ovary (CHO) cells, expressing homomeric either ASIC1a, ASIC2a or ASIC3, increased significantly by an H2S donor NaHS. The effect was reversed by washing the cells with NaHS-free external solution of pH 7.4. MTSES, a membrane impermeable cysteine thiol-modifier failed to abrogate the effect of NaHS on ASIC1a, suggesting that the target cysteine residues are not in the extracellular region of the channel. The effect of NaHS is not mediated through NO, as the basal NO level in cells did not change following NaHS application. This previously unknown mechanism of ASICs-modulation by H2S adds a new dimension to the ASICs in health and disease. (c) 2020 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available