4.8 Article

An effective stochastic framework for smart coordinated operation of wind park and energy storage unit

Journal

APPLIED ENERGY
Volume 272, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2020.115228

Keywords

Energy storage system (ESS); Wind park (WP); Transmission switching integrated interval robust chance-constrained (TSIRC); Uncertainty; Unscented transform (UT)

Ask authors/readers for more resources

This paper proposes a stochastic transmission switching integrated interval robust chance-constrained (TSIRC) approach to assess the operation of a wind park-energy storage system (WPES) in a day ahead electricity market considering the system technical constraints. To this end, the WPES is assumed as a price-maker, making it possible to alter the market price based on its own profit. The problem formulation is constructed as a tri-level max-min-max structure during a 24-h time horizon. The first level maximizes the hourly profit of the WPES. In the second level, the system operation cost is minimized in the form of a security constrained unit commitment (SCUC) in which the contingency effect associated with the generation units and transmission lines (TLs) as well as the congestion of the TLs is modelled. Considering the independent system operator (ISO) preferences, the third level is dedicated to the robustness of the WPES, which would maximize the allowable output variation of the wind turbines. The proposed tri-level model is then formulated in an efficient bi-level structure using the Karush-Kuhn-Tacker (KKT) conditions. Since the operation of the wind turbine is inherently associated with uncertainty, the TSIRC approach as an effective tool is able to model the uncertainties of the wind units by increasing the WPES profit as a strategic producer while reducing the system operation cost. In addition, unscented transform (UT) as an effective tool is considered to model the uncertainty of the stochastic parameters. The performance evaluation of this work is assessed on an IEEE test system. Different case studies are provided which show the authenticity and effectiveness of the proposed model. The simulation results show that the proposed TSIRC has effectively reduced the amount of lines' switching, and increased the power output of the wind park by 95% on average compared to the conventional TS-based model. In addition, the robustness of the system has increased, and the TSIRC has led the WPES's profit to increase by almost 11.5% compared to the TS-based approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available