4.8 Article

Ru-doped 3D flower-like bimetallic phosphide with a climbing effect on overall water splitting

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 279, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2020.119396

Keywords

Bimetallic phosphide; MOF derivative; Bifunctional catalyst; Water splitting; DFT calculation

Funding

  1. Natural Science Foundation of China [51672204]
  2. National Key Research and Development Program of China [2016YFA0202603]
  3. Fundamental Research Funds for the Central Universities [205201044]

Ask authors/readers for more resources

The resplendent prospect of water splitting hydrogen production technology makes the development of efficient and stable hydrogen/oxygen evolution reactions (HER/OER) bifunctional catalysts become urgent. Herein, inspired by the density function theory (DFT) calculation result that Ru-dopants have a climbing effect on both OER and HER processes, we construct a Ru doped three-dimensional flower-like bimetallic phosphide on nickel foam (Ru-NiCoP/NF) derived from Co leaf-like zeolitic imidazolate framework (Co ZIF-L), effectively driving both OER (216mV@20 mA cm(-2)) and HER (44mV@10 mA cm(-2)) in 1 M KOH solutions. The overall water splitting device assembled by using Ru-NiCoP/NF as both anode and cathode shows an ultralow cell voltage of 1.515 V to obtain 10 mA cm(-2). Interestingly, almost 100 % Faradic yield is achieved for the overall water splitting. This work represents a significant addition to exploring a new class of transition metal phosphides with outstanding performance in producing hydrogen via electrochemical water electrolysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available