4.6 Article

The Phospholipid:Diacylglycerol Acyltransferase-Mediated Acyl-Coenzyme A-Independent Pathway Efficiently Diverts Fatty Acid Flux from Phospholipid into Triacylglycerol in Escherichia coil

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 86, Issue 18, Pages -

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.00999-20

Keywords

phospholipid:diacylglycerol acyltransferase; protein engineering; triacylglycerol; wax ester synthase/acyl-CoA:diacylglycerol acyltransferase

Funding

  1. Chinese Academy of Agricultural Sciences [Y2020XK25, CAAS-ASTIP-2016-OCRI]
  2. Ministry of Science and Technology of the People's Republic of China [2016YFD0501209]
  3. 3551 Innovative Talent Project of Optics Valley of China [K159]

Ask authors/readers for more resources

Researchers have long endeavored to accumulate triacylglycerols (TAGs) or their derivatives in easily managed microbes. The attempted production of TAGs in Escherichia coli has revealed barriers to the broad applications of this technology, including low TAG productivity and slow cell growth. We have demonstrated that an acyl-CoA-independent pathway can divert phospholipid flux into TAG formation in E. coli mediated by Chlamydomonas reinhardtii phospholipid:diacylglycerol acyltransferase (CrPDAT) without interfering with membrane functions. We then showed the synergistic effect on TAG accumulation via the acyl-CoA-independent pathway mediated by PDAT and the acyl-CoA-dependent pathway mediated by wax ester synthase/acyl-CoA:diacylglycerol acyltransferase (WS/DGAT). Furthermore, CrPDAT led to synchronous TAG accumulation during cell growth, and this could be enhanced by supplementation of arbutin. We also showed that rationally mutated CrPDAT was capable of decreasing TAG lipase activity without impairing PDAT activity. Finally, ScPDAT from Saccharomyces cerevisiae exhibited similar activities as CrPDAT in E. coli. Our results suggest that the improvement in accumulation of TAGs and their derivatives can be achieved by fine-tuning of phospholipid metabolism in E. coll. Understanding the roles of PDAT in the conversion of phospholipids into TAGs during the logarithmic growth phase may enable a novel strategy for the production of microbial oils. IMPORTANCE Although phospholipid:diacylglycerol acyltransferase (PDAT) activity is presumed to exist in prokaryotic oleaginous bacteria, the corresponding gene has not been identified yet. In this article, we have demonstrated that an acyl-CoA-independent pathway can divert phospholipid flux into TAG formation in Escherichia coli mediated by exogenous CrPDAT from Chlamydomonas reinhardtii without interfering with membrane functions. In addition, the acyl-CoA-independent pathway and the acyl-CoA-dependent pathway had the synergistic effect on TAG accumulation. Overexpression of CrPDAT led to synchronous TAG accumulation during cell growth. In particular, CrPDAT possessed multiple catalytic activities, and the rational mutation of CrPDAT led to the decrease of TAG lipase activity without impairing acyltransferase activity. The present findings suggested that applying PDAT in E. coli or other prokaryotic microbes may be a promising strategy for accumulation of TAGs and their derivatives.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available