4.7 Article

Large-scale afforestation significantly increases permanent surface water in China's vegetation restoration regions

Journal

AGRICULTURAL AND FOREST METEOROLOGY
Volume 290, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.agrformet.2020.108001

Keywords

Vegetation restoration; Human activities; Climate change; Surface water resources; Afforestation

Funding

  1. National Natural Science Foundation of China [41525003, 41671282]
  2. Strategic Priority Research Program of Chinese Academy of Sciences [XDB40020302]

Ask authors/readers for more resources

China is facing the challenge of the uncertain impacts of large-scale afforestation on regional water resources. However, the effects of vegetation cover changes on the variation in surface water at the regional scale are still controversial. Here, we focused on the 0.9 million km(2) vegetation restoration region in China, where the highest significant vegetation cover changes on the earth. Multi-source remote sensing data were used to describe the characteristics of seasonality and transition of surface water and to analyse the causes of surface water changes from climate, vegetation cover and other human factors. Our results show that the annual maximum NDVI of Northeast region (NE) and Loess Plateau region (LP) increased significantly from 0.74 to 0.85 and 0.49 to 0.62 from 2000 to 2015, respectively. Meanwhile, permanent water, as a vital component of surface water, exhibited net increases of 695.6 km(2) and 119.4 km(2) in NE and LP from 2000 to 2015, respectively. The extension in permanent water and the implementation of ecological projects exhibited highly consistent spatiotemporal patterns. Statistical analysis indicated that vegetation cover is an important factor in controlling permanent water changes. Human activities such as building dams and reservoirs are also an important explanatory variable for permanent water increases. The newly built dams contributed 43% in NE and 25% in LP to the increase in permanent water. In addition, although climatic factors were not the main factor influencing permanent water, precipitation significantly affected the total surface water in NE. These findings have potential implications for understanding surface water and forest dynamics and formulating regional development plans in the vegetation restoration region in China.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available