4.8 Article

Ion Exchange Gels Allow Organic Electrochemical Transistor Operation with Hydrophobic Polymers in Aqueous Solution

Journal

ADVANCED MATERIALS
Volume 32, Issue 32, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202002610

Keywords

bioelectronics; conjugated polymers; ion transport; organic electrochemical transistors

Funding

  1. National Science Foundation award, NSF [DMR-1607242]
  2. NWIMPACT SEED award funding (UW)
  3. NWIMPACT SEED award funding (PNNL)

Ask authors/readers for more resources

Conjugated-polymer-based organic electrochemical transistors (OECTs) are being studied for applications ranging from biochemical sensing to neural interfaces. While new polymers that interface digital electronics with the aqueous chemistry of life are being developed, the majority of high-performance organic transistor materials are poor at transporting biologically relevant ions. Here, the operating mode of an organic transistor is changed from that of an electrolyte-gated organic field-effect transistor (EGOFET) to that of an OECT by incorporating an ion exchange gel between the active layer and the aqueous electrolyte. This device works by taking up biologically relevant ions from solution and injecting more hydrophobic ions into the active layer. Using poly[2,5-bis(3-tetradecylthiophen-2-yl) thieno[3,2-b]thiophene] as the active layer and a blend of an ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, and poly(vinylidene fluoride-co-hexafluoropropylene) as the ion exchange gel, four orders of magnitude improvement in device transconductance and a 100-fold increase in kinetics are demonstrated. The ability of the ion-exchange-gel OECT to record biological signals by measuring the action potentials of a Venus flytrap is demonstrated. These results show the possibility of using interface engineering to open up a wider palette of organic semiconductors as OECTs that can be gated by aqueous solutions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available