4.8 Article

Engineering Surface Atomic Architecture of NiTe Nanocrystals Toward Efficient Electrochemical N2Fixation

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 30, Issue 39, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202004208

Keywords

crystal facets; nickel telluride; nitrogen reduction reaction; surface atomic architecture

Funding

  1. Ministry of Science and Technology of China
  2. Key Program for International S&T Cooperation Projects [2018YFE0124600]
  3. Cross Training Plan for High Level Talents in Beijing Colleges and Universities

Ask authors/readers for more resources

Efficient N(2)fixation at ambient condition through electrochemical processes has been regarded as a promising alternative to traditional Haber-Bosch technology. Engineering surface atomic architecture of the catalysts to generate desirable active sites is important to facilitate electrochemical nitrogen reduction reaction (NRR) while suppressing the competitive hydrogen evolution reaction. Herein, nickel telluride nanocrystals with selectively exposed {001} and {010} facets are synthesized by a simple process, realizing the manipulation of surface chemistry at the atomic level. It is found that the catalysts expose the {001} facets coupled with desirable Ni sites, which possess high Faraday efficiency of 17.38 +/- 0.36% and NH(3)yield rate of 33.34 +/- 0.70 mu g h(-1)mg(-1)at -0.1 V vs RHE, outperforming other samples enclosed by {010} facets (8.56 +/- 0.22%, 12.78 +/- 0.43 mu g h(-1)mg(-1)). Both experimental results and computational simulations reveal that {001} facets, with selectively exposed Ni sites, guarantee the adsorption and activation of N(2)and weaken the binding for *H species. Moreover, the enhanced reduction capacity and accelerated charge transfer kinetics also contribute the superior NRR performance of {001} facets. This work presents a novel strategy in designing nonprecious NRR electrocatalyst with exposed favorable active sites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available