4.8 Article

Rear-Illuminated Perovskite Photorechargeable Lithium Battery

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 30, Issue 30, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202001865

Keywords

battery charging; perovskite solar cells; photorechargeable; solar charging batteries; solar rechargeable

Funding

  1. NSF MRI [1428992]
  2. NASA EPSCoR [NNX15AM83A]
  3. U.S.-Egypt Science and Technology (ST) Joint Fund
  4. SDBoR RD Program
  5. EDA University Center Program [ED18DEN3030025]

Ask authors/readers for more resources

Photovoltaic power-conversion systems can harvest energy from sunlight almost perpetually whenever sunrays are accessible. Meanwhile, as indispensable energy storage units used in advanced technologies such as portable electronics, electric vehicles, and renewable/smart grids, batteries are energy-limited closed systems and require constant recharging. Fusing these two essential technologies into a single device would create a sustainable power source. Here, it is demonstrated that such an integrated device can be realized by fusing a rear-illuminated single-junction perovskite solar cell with Li4Ti5O12-LiCoO2 Li-ion batteries, whose photocharging is enabled by an electronic converter via voltage matching. This design facilitates a straightforward monolithic stacking of the battery on the solar cell using a common metal substrate, which provides a robust mechanical isolation between the two systems while simultaneously providing an efficient electrical interconnection. This system delivers a high overall photoelectric conversion-storage efficiency of 7.3%, outperforming previous efforts on stackable integrated architectures with organic-inorganic photovoltaics. Furthermore, converter electronics facilitates system control with battery management and maximum power point tracking, which are inevitable for efficient, safe, and reliable operation of practical loads. This work presents a significant advancement toward integrated photorechargeable energy storage systems as next-generation power sources.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available