4.8 Article

Black-Phosphorus-Incorporated Hydrogel as a Conductive and Biodegradable Platform for Enhancement of the Neural Differentiation of Mesenchymal Stem Cells

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 30, Issue 39, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202000177

Keywords

biodegradable hydrogels; black phosphorus; conductive hydrogels; mesenchymal stem cells; neural differentiation

Funding

  1. National Natural Science Foundation of China [51732010]

Ask authors/readers for more resources

Conductive hydrogel scaffolds have important applications for electroactive tissue repairs. However, the development of conductive hydrogel scaffolds tends to incorporate nonbiodegradable conductive nanomaterials that will remain in the human body as foreign matters. Herein, a biodegradable conductive hybrid hydrogel is demonstrated based on the integration of black phosphorus (BP) nanosheets into the hydrogel matrix. To address the challenge of applying BP nanosheets in tissue engineering due to its intrinsic instability, a polydopamine (PDA) modification method is developed to improve the stability. Moreover, PDA modification also enhances interfacial bonding between pristine BP nanosheets and the hydrogel matrix. The incorporation of polydopamine-modified black phosphorous (BP@PDA) nanosheets into the gelatin methacryloyl (GelMA) hydrogels significantly enhances the electrical conductivity of the hydrogels and improves the cell migration of mesenchymal stem cells (MSCs) within the 3D scaffolds. On the basis of the gene expression and protein level assessments, the BP@PDA-incorporated GelMA scaffold can significantly promote the differentiation of MSCs into neural-like cells under the synergistic electrical stimulation. This strategy of integrating biodegradable conductive BP nanomaterials within a biocompatible hydrogel provides a new insight into the design of biomaterials for broad applications in tissue engineering of electroactive tissues, such as neural, cardiac, and skeletal muscle tissues.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available