4.7 Article

A phase-field model for non-isothermal phase transformation and plasticity in polycrystalline yttria-stabilized tetragonal zirconia

Journal

ACTA MATERIALIA
Volume 191, Issue -, Pages 111-123

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2020.03.025

Keywords

Zirconia; Phase-field modeling; Plasticity; Martensitic transformation; Shape memory materials

Funding

  1. U.S. Department of Energy, Office of Science, Basic Energy Sciences [DESC0019279]
  2. Extreme Science and Engineering Discovery Environment (XSEDE)

Ask authors/readers for more resources

We propose an elastoplastic phase-field (PF) model to investigate the mechanics of tetragonal-to-monoclinic phase transformation (TMPT) and elastoplastic deformation of polycrystalline yttria-stabilized tetragonal zirconia (YSTZ). A Landau polynomial with non-vanishing chemical energy at the equilibrium temperature is introduced to account for the actual formation energies of the phases. The effects of different grain orientations, latent heat, and temperature on TMPT and deformation mechanisms are considered. The suppressive transformation effects of the grain boundaries (GBs) is modeled using an inhomogeneous kinetic coefficient in the bulk and GBs. The simulation results for single crystals demonstrate the capability of the model to reproduce the orientation-dependent compressive deformation of YSTZ similar to atomistic simulations and micropillar experiments. The single crystal with [100] crystallographic orientation along the loading direction (SC[100]) displays both TMPT and plasticity, SC[101] experiences only phase transformation, while SC [001] undergoes only plastic yielding. The TMPT induced by compressive loading exhibits shape memory effect (SME) below the equilibrium transformation temperature and pseudoelasticity above it, while the critical transformation stress increases with increasing loading temperature. The irrecoverable plastic strain is found to trap a part of the monoclinic phase, which prevents a complete reverse transformation. The polycrystalline cases also display SME and PE at low and high temperatures, respectively. Due to the orientation differences between grains and the stress concentrations at geometric nonlinearities, plastic deformation occurs in polycrystalline YSTZ for an applied load less than the yield stress. The results suggest a possible limitation of plasticity and an improvement of the shape recovery of YSTZ if one can control the orientation of the grains and/or increase the density of stacking faults at the GBs during material processing. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available