4.8 Article

Biomimetic Sn4P3 Anchored on Carbon Nanotubes as an Anode for High-Performance Sodium-Ion Batteries

Journal

ACS NANO
Volume 14, Issue 7, Pages 8826-8837

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.0c03432

Keywords

tin phosphide; sodium-ion battery; anode; heterostructure; biomimetic; in situ EIS

Funding

  1. Australian Government Research Training Program

Ask authors/readers for more resources

Recently, Sn4P3 has emerged as a promising anode for sodium-ion batteries (SIBs) due to the high specific capacity. However, the use of Sn4P3 has been impeded by capacity fade and an inferior rate performance. Herein, a biomimetic heterostructure is reported by using a simple hydrothermal reaction followed by thermal treatment. This bottlebrush-like structure consists of a stein-like carbon nanotube (CNT) as the electron expressway and mechanical support; fructus-like Sn4P3 nanoparticles as the active material; and the permeable stoma-like thin carbon coating as the buffer layer. Having benefited from the biomimetic structure, a superior electrochemical performance is obtained in the SIBs. It exhibits a high capacity of 742 mA h g(-1) after 150 cycles at 0.2C, and superior rate performance with 449 mA h g(-1) at 2C after 500 cycles. Moreover, the sodium storage mechanism is confirmed by cyclic voltammetry and ex situ X-ray diffraction and transmission electron microscopy. In situ electrochemical impedance spectroscopy was adopted to analyze the reaction dynamics. This research represents a further step toward figuring out the inferior electrochemical performance of other metal phosphide materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available