4.8 Article

Assembly of a Fluorescent Chiral Photonic Crystal Membrane and Its Sensitive Responses to Multiple Signals Induced by Small Molecules

Journal

ACS NANO
Volume 14, Issue 6, Pages 7380-7388

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.0c02883

Keywords

chiral fluorescence membrane; chiral photonic crystal; fluorescence switch; stimuli response; small molecules

Funding

  1. National Natural Science Foundation of China [21978046]
  2. Natural Science Foundation of Shanghai [18ZR1400800]
  3. China Postdoctoral Science Foundation [2019M651327]

Ask authors/readers for more resources

Chiral liquid crystal materials that are responsive to environmental stimuli are in demand. A chiral photonic crystal membrane based on cellulose nanocrystals (CNCs) was prepared by molecule assembly in the present work. A fluorescent molecule containing a cationic group, [N-(3-N-benzyl-N,N-dimethylpropyl ammonium chloride)-1,8-naphthalimide]hydrazine, was assembled on the surface of the CNCs. The new chiral photonic crystal membrane possesses supersensitive multi-responses to small molecules, such as water and formaldehyde molecules. The appearance, liquid crystal texture, fluorescence, and color of the chiral membrane have sensitive changes induced by small molecules. By increasing RH from 30 to 100%, the reflectance peak of the membrane red- shifted from 498 to 736 nm. In particular, the iridescent texture and fingerprint structure of the membrane could change markedly under trace amounts of formaldehyde, and the chiral membrane can form an extremely sensitive off-on fluorescence switch. The relationship between the fluorescence intensity and the trace concentration of formaldehyde satisfied the linear equation with the association coefficient of 0.9997. The changes in fluorescence and color are visible to the naked eye, and the membrane can quantitatively recognize trace formaldehyde at a molecular level in a humid environment. The mechanism by which the fluorescence switch operates was investigated using density functional theory at the B3LYP/6-31G(d) level. The membrane has potential for use in the fields of advanced functional materials and biomaterials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available