4.8 Article

Bone-Targeting Prodrug Mesoporous Silica-Based Nanoreactor with Reactive Oxygen Species Burst for Enhanced Chemotherapy

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 12, Issue 31, Pages 34630-34642

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c08992

Keywords

ROS-sensitive nanoparticle; photodynamic therapy; chemotherapy sensitivity; ROS waterfall flow; osteosarcoma therapy

Funding

  1. National Natural Science Foundation of China [21805318, 51973241, 31800835]
  2. Natural Science Foundation of Guangdong Province [2018B030306007, 2018A030313521]
  3. Light Project of the West of the Chinese Academy of Sciences [2018XBQNXZB007]

Ask authors/readers for more resources

Cancer remains a primary threat to human lives. Recently, amplification of tumor-associated reactive oxygen species (ROS) has been used as a boosting strategy to improve tumor therapy. Here, we report on a bone-targeting prodrug mesoporous silica-based nanoreactor for combined photodynamic therapy (PDT) and enhanced chemotherapy for osteosarcoma. Because of surface modification of a bone-targeting biphosphate moiety and the enhanced permeability and retention effect, the formed nanoreactor shows efficient accumulation in osteosarcoma and exhibits long-term retention in the tumor microenvironment. Upon laser irradiation, the loaded photosensitizer chlorin e6 (Ce6) produces in situ ROS, which not only works for PDT but also functions as a trigger for controlled release of doxorubicin (DOX) and doxycycline (DOXY) from the prodrugs based on a thioketal (TK) linkage. The released DOXY further promotes ROS production, thus perpetuating subsequent DOX/DOXY release and ROS burst. The ROS amplification induces long-term high oxidative stress, which increases the sensitivity of the osteosarcoma to chemotherapy, therefore resulting in enhanced tumor cell inhibition and apoptosis. The as-developed nanoreactor with combined PDT and enhanced chemotherapy based on ROS amplification shows significant promise as a potential platform for cancer treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available