4.8 Article

Cu-Doped P2-Na0.7Mn0.9Cu0.1O2 Sodium-Ion Battery Cathode with Enhanced Electrochemical Performance: Insight from Water Sensitivity and Surface Mn(II) Formation Studies

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 12, Issue 31, Pages 34848-34857

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c07244

Keywords

sodium-ion battery; manganese-based cathode; copper substitution; water intercalation; surface Mn2+ formation

Funding

  1. National Natural Science Foundation of China [21802044, 21872055]
  2. National Natural Science Foundation of China for Excellent Young Scholars [21522303]

Ask authors/readers for more resources

Sodium-ion batteries(SIBS) show great application prospects in large-scale energy storage. P2-type manganese-based layered oxides have received special attention by virtue of their high theoretical capacity, low cost, and environmental friendliness. However, water sensitivity and limited cycling stability hinder their application, especially since the underlying mechanisms for the above two issues are still unclear. In this work, copper substitution is used to suppress the Jahn-Teller effect of Mn3+ and affect the corresponding lattice structure. The water sensitivity and charge compensation mechanism were carefully investigated. Results demonstrate that water sensitivity of the electrode is related to the order of Na+/vacancy in the Na interlayers since water molecules are more easily inserted into the charged state electrodes, but the tendency for the water uptake does not increase with Na+ extraction. Furthermore, Mn2+ forms on the surface of electrodes in the initial discharge process, and the redox reaction in the bulk is predominantly between Mn3+ and Mn4+. Cu-substituted in TM layer affects the arrangement of Na+/vacancy and suppresses the Mn2+ formation on the Na0.7Mn0.9Cu0.1O2 electrode that results in superior air stability and better storage properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available