4.8 Article

Single and Bilayer Polyacrylamide Hydrogel-Based Microcapsules for the Triggered Release of Loads, Logic Gate Operations, and Intercommunication between Microcapsules

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 12, Issue 28, Pages 31124-31136

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c06711

Keywords

G-quadruplex; DNAzyme; hybridization chain reaction; DNA nanotechnology; nanomedicine

Funding

  1. Israel Science Foundation

Ask authors/readers for more resources

A method to assemble loaded stimuli-responsive DNA-polyacrylamide hydrogel-stabilized microcapsules is presented. The method involves coating substrate-loaded CaCO3 microparticles, functionalized with nucleic acid promoter units, and cross-linking DNA-modified polyacrylamide chains on the microcapsules, using the hybridization chain reaction (HCR) to yield the DNA-cross-linked hydrogel coating. Dissolution of the CaCO3 particles generated the substrate-loaded hydrogel-protected microcapsules. The microcapsule-hydrogel shells include engineered stimuli-responsive oligonucleotide cross-linkers that control the stiffness of the hydrogel shells, allowing the triggered release of the loads. One approach includes the incorporation of cofactor-dependent DNAzyme units into the cross-linked hydrogel layers (cofactor = Me2+ ions, Zn2+ ions, or histidine) as stimuli-responsive units. Cleavage of the cross-linking DNAzyme substrates by the respective cofactors yields hydrogel coatings with a reduced stiffness and higher porosity that allow the release of the loads. A further approach involved the application of the HCR process to assemble the bilayer hydrogel microcapsules that are unlocked by two cooperative triggers. Bilayer microcapsules consisting of a K+ ions-stabilized G-quadruplex/18-crown-6-ether (CE) responsive layer and a Mg2+ ion DNAzyme-responsive layers are presented. Unlocking and locking of the G-quadruplex cross-linked layer by 18-crown-6-ether and K+ ions, respectively, in the presence of Mg2+ ions allow the switchable controlled release of the load. In addition, the intercommunication of two kinds of stimuli-responsive bilayer hydrogel microcapsules carrying two different loads (tetramethylrhodamine-dextran, TMR-D, and CdSe/ZnS quantum dots) is demonstrated. The intercommunication process involves the stimuli-triggered generation of information transfer strands from one microcapsule to another that activate the release of the loads.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available