4.8 Article

Quadruple Hydrogen Bonding Supramolecular Elastomers for Melt Extrusion Additive Manufacturing

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 12, Issue 28, Pages 32006-32016

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c08958

Keywords

quadruple hydrogen bonding; supramolecular polymer; extrusion additive manufacturing; microphase separation; rheology; mechanical property

Funding

  1. National Science Foundation [DMR-1809291]
  2. Department of Chemistry, Macromolecules Innovation Institute (MII) at Virginia Tech
  3. Nanoscale Characterization and Fabrication Laboratory (NCFL) at Virginia Tech

Ask authors/readers for more resources

This manuscript describes the versatility of highly directional, noncovalent interactions, i.e., quadruple hydrogen bonding (QHB), to afford novel polyurea segmented supramolecular polymers for melt extrusion three-dimensional (3D) printing processes. The molecular design of the polyurea elastomers features (1) flexible polyether segments and relatively weak urea hydrogen-bonding sites in the soft segments to provide elasticity and toughness, and (2) strong ureido-cytosine (UCyt) QHB in the hard segments to impart enhanced mechanical integrity. The resulting polyureas were readily compression-molded into mechanically-robust, transparent, and creasable films. Optimization of polyurea composition offered a rare combination of high tensile strength (95 MPa), tensile elongation (788% strain), and toughness (94 MJ/m(3)), which are superior to a commercially available Ninjaflex elastomer. The incorporation of QHB facilitated melt processability, where hydrogen bonding dissociation provided low viscosities at printing temperatures. During cooling, directional self-assembly of UCyt QHB facilitated the solidification process and contributed to part fidelity with the formation of a robust physical network. The printed objects displayed high layer fidelity, smooth surfaces, minimal warpage, and complex geometries. The presence of highly directional QHB effectively diminished mechanical anisotropy, and the printed samples exhibited comparable Young's moduli along (x-y direction, 0 degrees) and perpendicular to (z-direction, 90 degrees) the layer direction. Remarkably, the printed samples exhibited ultimate tensile strains approaching 500% in the z-direction prior to failure, which was indicative of improved interlayer adhesion. Thus, this design paradigm, which is demonstrated for novel polyurea copolymers, suggests the potential of supramolecular polymers with enhanced mechanical performance, melt processability, recydability, and improved interlayer adhesion for melt extrusion additive manufacturing processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available