4.7 Article

Photo-Thermal Interactions in a Semiconducting Media with a Spherical Cavity under Hyperbolic Two-Temperature Model

Journal

MATHEMATICS
Volume 8, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/math8040585

Keywords

Laplace transforms; hyperbolic two-temperature; spherical cavity; eigenvalues method; semiconductor medium

Categories

Funding

  1. Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia [KEP-92-130-38]
  2. DSR

Ask authors/readers for more resources

This article highlights the study of photo-thermoelastic interaction in an unbounded semiconductor medium containing a spherical cavity. This problem is solved using the new hyperbolic two-temperature model. The bounding surface of the cavity is traction free and loaded thermally by exponentially decaying pulse boundary heat flux. In addition, the carrier density is prescribed on the inner surface of the cavity in terms of the recombination speed. The techniques of Laplace transforms are used to get the analytical solutions of the problem in the transformed domain by the eigenvalues method. The inversions of Laplace transformations have been carried out numerically. The outcomes also display that the analytical schemes can overcome the mathematical problem to analyze this problem. Numerical outcomes for a semiconductor material are performed and demonstrated graphically. According to the numerical results, this new hyperbolic two-temperature model of thermoelasticity offers finite speed of the thermal wave and mechanical wave propagation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available