4.6 Article

Antioxidant Graphene Oxide Nanoribbon as a Novel Whitening Agent Inhibits Microphthalmia-Associated Transcription Factor-Related Melanogenesis Mechanism

Journal

ACS OMEGA
Volume 5, Issue 12, Pages 6588-6597

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.9b04316

Keywords

-

Funding

  1. Ministry of Science and Technology [MOST 108-2221-E-005-044]
  2. Chang Gung Memorial Hospital [BMRPA64, CMRPD2F0041]
  3. Research Center for Sustainable Energy and Nanotechnology, NCHU [107S0203B]
  4. PhD Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University
  5. National Health Research Institutes

Ask authors/readers for more resources

In the melanin synthesis process, oxidative reactions play an essential role, and it is a good strategy to inhibit melanin production by reducing oxidative stress. Fullerene and its derivatives, or the complexes, were considered as strong free-radical scavengers, and we further applied multilayered sp(2) nanocarbons to discover melanin synthesis inhibitory mechanisms. In the present study, we used novel nanomaterials, such as multiwalled carbon nanotubes (MWCNTs), short-type MWCNTs, graphene oxide nanoribbons (GONRs), and short-type GONRs, as anti-oxidative agents to regulate melanin production. The results showed that GONRs had better anti-oxidative capabilities in intracellular and extracellular oxidative stress analysis platforms than others. We proposed that GONRs have oxygen-containing functional groups. In the 2',7'-dichlorodihydrofluorescein diacetate assay, we found out GONR could chelate metal ions to scavenge reactive oxygen species. In the molecular insight view, we observed that these nanomaterials downregulated the melanin synthesis by decreasing microphthalmia-associated transcription factor-related gene expressions, and there were similar consequences in protein expressions. To sum up, GONRs is a potential agent as a novel antioxidant and skin-whitening cosmetology material.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available