4.7 Article

Ascorbic Acid Induces the Increase of Secondary Metabolites, Antioxidant Activity, Growth, and Productivity of the Common Bean under Water Stress Conditions

Journal

PLANTS-BASEL
Volume 9, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/plants9050627

Keywords

ascorbic acid; antioxidant systems; drought stress; Phaseolus vulgaris; secondary metabolites; yield

Categories

Funding

  1. National Research Centre, Cairo, Egypt [11030129]
  2. Ministry of Science and Higher Education of the Republic of Poland

Ask authors/readers for more resources

One of the most vital environmental factors that restricts plant production in arid and semi-arid environments is the lack of fresh water and drought stress. Common bean (Phaseolus vulgaris L.) productivity is severely limited by abiotic stress, especially climate-related constraints. Therefore, a field experiment in split-plot design was carried out to examine the potential function of ascorbic acid (AsA) in mitigating the adverse effects of water stress on common bean. The experiment included two irrigation regimes (100% or 50% of crop evapotranspiration) and three AsA doses (0, 200, or 400 mg L-1 AsA). The results revealed that water stress reduced common bean photosynthetic pigments (chlorophyll and carotenoids), carbonic anhydrase activity, antioxidant activities (2,2-diphenyl-1-picrylhydrazyl free radical activity scavenging activity and 2,2 '-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation assay), growth and seed yield, while increased enzymatic antioxidants (peroxidase), secondary metabolites (phenolic, flavonoids, and tannins), malondialdehyde (MDA), and crop water productivity. In contrast, the AsA foliar spray enhanced all studied traits and the enhancement was gradual with the increasing AsA dose. The linear regression model predicted that when the AsA dose increase by 1.0 mg L-1, the seed yield is expected to increase by 0.06 g m(-2). Enhanced water stress tolerance through adequate ascorbic acid application is a promising strategy to increase the tolerance and productivity of common bean under water stress. Moreover, the response of common bean to water deficit appears to be dependent on AsA dose.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available