4.7 Article

Physicochemical Properties and Resistant Starch Content of Corn Tortilla Flours Refrigerated at Different Storage Times

Journal

FOODS
Volume 9, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/foods9040469

Keywords

nixtamalization; corn tortilla flours; friability; resistant starch; refrigeration storage; amylose-lipids complexes

Funding

  1. CONACYT
  2. Rectory Special Projects Fund of the Autonomous University of Queretaro [FOPER-2019-01225-UAQ]

Ask authors/readers for more resources

The tortilla is a foodstuff that has a short shelf-life, causing great losses to the industry. The objective of this work was to evaluate, for the first time, the physicochemical properties and resistant starch (RS) content of flours. These were obtained from nixtamalized corn tortillas made with traditional and industrial (commercial) methods, stored at 4 degrees C for 7, 15, and 30 days. The flours were characterized by measuring particle size distribution, color, water absorption index (WAI), water solubility index (WSI), viscosity, calcium, and RS content. Additionally, chemical proximate analysis, scanning electron microscopy (SEM), and thermal analysis were conducted. Storage at 4 degrees C increased the friability of tortillas and shifted the particle size distribution toward a greater content of coarse particles in corn tortilla flours. The commercial corn tortilla flours showed higher WAI and WSI values than the traditional corn tortilla flours. On the other hand, the traditional corn tortilla flours exhibited higher RS content values than commercial corn tortilla flours as well as peak viscosity. X-ray diffractograms revealed the presence of amylose-lipid complexes (RS5) in experimental samples. The thermograms evidenced three endotherms corresponding to corn starch gelatinization and melting of type I and type II amylose-lipid complexes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available