4.7 Article

Impact of Acorn Flour on Gluten-Free Dough Rheology Properties

Journal

FOODS
Volume 9, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/foods9050560

Keywords

acorn flour; gluten-free dough; fibre-rich ingredient; underexploited resources; rheology; pasting properties

Funding

  1. FCT-Portuguese Foundation for Science and Technology [PD/BD/135332/2017, UIDB/04033/2020, UID/AGR/04129/2013, UIDB/00616/2020]
  2. Fundação para a Ciência e a Tecnologia [PD/BD/135332/2017] Funding Source: FCT

Ask authors/readers for more resources

Gluten is a fundamental ingredient in breadmaking, since is responsible for the viscoelastic behaviour of the dough. The lack of gluten has a critical effect on gluten-free dough, leading to less cohesive and less elastic doughs, and its replacement represents a challenge for bakery industry. However, dough rheology can be improved combining different ingredients with structural capacity and taking advantage from their interactions. Although acorn flour was used to bake bread even before Romans, nowadays is an underexploited resource. It presents good nutritional characteristics, particularly high fibre content and is naturally gluten free. The aim of this study was to use acorn flour as a gluten-free ingredient to improve dough rheology, following also market trends of sustainability and fibre-rich ingredients. Doughs were prepared with buckwheat and rice flours, potato starch and hydroxypropylmethylcellulose. Two levels of acorn flour (23% and 35% w/w) were tested and compared with control formulation. Micro-doughLAB was used to study mixing and pasting properties. Doughs were characterised using small amplitude oscillatory measurements (SAOS), with a controlled stress rheometer, and regarding Texture Profile Analysis (TPA) by a texturometer. Dietary fibre content and its soluble and insoluble fractions were also evaluated on the developed breads. Acorn flour showed promising technological properties as food ingredient for gluten-free baking (improved firmness, cohesiveness and viscoelasticity of the fermented dough), being an important fibre source.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available