4.7 Article

Triterpenic Acids as Non-Competitive α-Glucosidase Inhibitors from Boswellia elongata with Structure-Activity Relationship: In Vitro and In Silico Studies

Journal

BIOMOLECULES
Volume 10, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/biom10050751

Keywords

Boswellia elongata; triterpene acids; alpha-glucosidase inhibitors; NMR spectroscopy; kinetics study; homology modeling; molecular docking

Funding

  1. The Oman Research Council (TRC) [BFP/RGP/CBS/18/011]

Ask authors/readers for more resources

Fourteen triterpene acids, viz., three tirucallane-type (1-3), eight ursane-type (4-11), two oleanane-type (12, 13) and one lupane type (21), along with boswellic aldehyde (14), alpha-amyrine (15), epi-amyrine (16), straight chain acid (17), sesquiterpene (19) and two cembrane-type diterpenes (18, 20) were isolated, first time, from the methanol extract of Boswellia elongata resin. Compound (1) was isolated for first time as a natural product, while the remaining compounds (221) were reported for first time from B. elongata. The structures of all compounds were confirmed by advanced spectroscopic techniques including mass spectrometry and also by comparison with the reported literature. Eight compounds (1-5, 11, 19 and 20) were further screened for in vitro alpha-glucosidase inhibitory activity. Compounds 3-5 and 11 showed significant activity against alpha-glucosidase with IC50 values ranging from 9.9-56.8 mu M. Compound 4 (IC50 = 9.9 +/- 0.48 mu M) demonstrated higher inhibition followed by 11 (IC50 = 14.9 +/- 1.31 mu M), 5 (IC50 = 20.9 +/- 0.05 mu M) and 3 (IC50 = 56.8 +/- 1.30 mu M), indicating that carboxylic acid play a key role in alpha-glucosidase inhibition. Kinetics studies on the active compounds 3-5 and 11 were carried out to investigate their mechanism (mode of inhibition and dissociation constants K-i). All compounds were found to be non-competitive inhibitors with K-i values in the range of 7.05 +/- 0.17-51.15 +/- 0.25 mu M. Moreover, in silico docking was performed to search the allosteric hotspot for ligand binding which is targeted by our active compounds investigates the binding mode of active compounds and it was identified that compounds preferentially bind in the allosteric binding sites of alpha-glucosidase. The results obtained from docking study suggested that the carboxylic group is responsible for their biologic activities. Furthermore, the alpha-glucosidase inhibitory potential of the active compounds is reported here for the first time.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available