4.7 Article

Graphene Oxide Nanosheets Tailored With Aromatic Dipeptide Nanoassemblies for a Tuneable Interaction With Cell Membranes

Journal

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fbioe.2020.00427

Keywords

self-assembly; supported lipid bilayers; copper; diphenylalanine; dityrosine; peptide nanotubes; AFM; QCM-D

Funding

  1. MIUR (PRIN grant) [2017WBZFHL]
  2. ERA-NET Cofund M-ERA-NET 2 (Project SmartHyCAR) [4274]
  3. University of Catania (Piano della Ricerca di Ateneo, Linea di Intervento 2, 2018-2020)

Ask authors/readers for more resources

Engineered graphene-based derivatives are attractive and promising candidates for nanomedicine applications because of their versatility as 2D nanomaterials. However, the safe application of these materials needs to solve the still unanswered issue of graphene nanotoxicity. In this work, we investigated the self-assembly of dityrosine peptides driven by graphene oxide (GO) and/or copper ions in the comparison with the more hydrophobic diphenylalanine dipeptide. To scrutinize the peptide aggregation process, in the absence or presence of GO and/or Cu2+, we used atomic force microscopy, circular dichroism, UV-visible, fluorescence and electron paramagnetic resonance spectroscopies. The perturbative effect by the hybrid nanomaterials made of peptide-decorated GO nanosheets on model cell membranes of supported lipid bilayers was investigated. In particular, quartz crystal microbalance with dissipation monitoring and fluorescence recovery after photobleaching techniques were used to track the changes in the viscoelastic properties and fluidity of the cell membrane, respectively. Also, cellular experiments with two model tumour cell lines at a short time of incubation, evidenced the high potential of this approach to set up versatile nanoplatforms for nanomedicine and theranostic applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available