4.3 Article

Structure-strength relations of distinct MoN phases from first-principles calculations

Journal

PHYSICAL REVIEW MATERIALS
Volume 4, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevMaterials.4.044002

Keywords

-

Funding

  1. National Natural Science Foundation of China [U1804121, 11304167]

Ask authors/readers for more resources

Molybdenum mononitrides (MoN) exhibit superior strength and hardness among the large class of transitionmetal light-element compounds, but the underlying atomistic mechanisms for their outstanding mechanical properties and the variations of those properties among various MoN phases adopting different crystal structures remain largely unexplored and require further investigation. Here we report first-principles calculations that examine the stress-strain relations of these materials, and systematically compare results under pure and indentation shear deformations. In particular, we examine the distinct bonding structures and the associated mechanical properties in four different crystal phases of MoN that have been experimentally synthesized and stabilized under various physical conditions. Our results reveal evolution patterns of bonding configurations and the resulting structural deformation modes in these MoN phases, which produce diverse stress responses and unexpected strength variations. These findings elucidate the structural and bonding characters that are responsible for the rich and distinct mechanical properties in various MoN structures, providing insights for understanding the experimentally observed phenomena and further exploring advanced superhard materials among the promising transition-metal nitrides, borides, and carbides.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available