4.7 Article

Evaluating Feruloyl Esterase-Xylanase Synergism for Hydroxycinnamic Acid and Xylo-Oligosaccharide Production from Untreated, Hydrothermally Pre-Treated and Dilute-Acid Pre-Treated Corn Cobs

Journal

AGRONOMY-BASEL
Volume 10, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/agronomy10050688

Keywords

Ferulic acid; Feruloyl esterase; Xylanase; Synergy; Xylo-oligosaccharides

Funding

  1. South African Department of Science and Technology (DST)/Council for Scientific and Industrial Research (CSIR) National Biocatalysis Initiative
  2. National Research Foundation (NRF) of South Africa
  3. Rhodes University

Ask authors/readers for more resources

Agricultural residues are considered the most promising option as a renewable feedstock for biofuel and high valued-added chemical production due to their availability and low cost. The efficient enzymatic hydrolysis of agricultural residues into value-added products such as sugars and hydroxycinnamic acids is a challenge because of the recalcitrant properties of the native biomass. Development of synergistic enzyme cocktails is required to overcome biomass residue recalcitrance, and achieve high yields of potential value-added products. In this study, the synergistic action of two termite metagenome-derived feruloyl esterases (FAE5 and FAE6), and an endo-xylanase (Xyn11) from Thermomyces lanuginosus, was optimized using 0.5% (w/v) insoluble wheat arabinoxylan (a model substrate) and then applied to 1% (w/v) corn cobs for the efficient production of xylo-oligosaccharides (XOS) and hydroxycinnamic acids. The enzyme combination of 66% Xyn11 and 33% FAE5 or FAE6 (protein loading) produced the highest amounts of XOS, ferulic acid, and p-coumaric acid from untreated, hydrothermal, and acid pre-treated corn cobs. The combination of 66% Xyn11 and 33% FAE6 displayed an improvement in reducing sugars of approximately 1.9-fold and 3.4-fold for hydrothermal and acid pre-treated corn cobs (compared to Xyn11 alone), respectively. The hydrolysis product profiles revealed that xylobiose was the dominant XOS produced from untreated and pre-treated corn cobs. These results demonstrated that the efficient production of hydroxycinnamic acids and XOS from agricultural residues for industrial applications can be achieved through the synergistic action of FAE5 or FAE6 and Xyn11.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available