4.6 Article

Choline-Based Ionic Liquids-Incorporated IRMOF-1 for H2S/CH4 Capture: Insight from Molecular Dynamics Simulation

Journal

PROCESSES
Volume 8, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/pr8040412

Keywords

ionic liquids; metal-organic framework; hydrogen sulfide; methane; choline; molecular dynamic

Funding

  1. UTP-UIR International Grant [015ME0-040]

Ask authors/readers for more resources

The removal of H2S and CH4 from natural gas is crucial as H2S causes environmental contamination, corrodes the gas stream pipelines, and decreases the feedstock for industrial productions. Many scientific researches have shown that the metal-organic framework (MOF)/ionic liquids (ILs) have great potential as alternative adsorbents to capture H2S. In this work, molecular dynamics (MD) simulation was carried out to determine the stability of ILs/IRMOF-1 as well as to study the solubility of H2S and CH4 gases in this ILs/IRMOF-1 hybrid material. Three choline-based ILs were incorporated into IRMOF-1 with different ratios of 0.4, 0.8, and 1.2% w/w, respectively, in which the most stable choline-based ILs/IRMOF-1 composite was analysed for H2S/CH4 solubility selectivity. Among the three choline-based ILs/IRMOF-1, [Chl] [SCN]/IRMOF-1 shows the most stable incorporation. However, the increment of ILs loaded in the IRMOF-1 significantly reduced the stability of the hybrid due to the crowding effect. Solvation free energy was then computed to determine the solubility of H2S and CH4 in the [Chl] [SCN]/IRMOF-1. H2S showed higher solubility compared to CH4, where its solubility declined with the increase of choline-based IL loading.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available