4.7 Article

Flow Homogenization Enables a Massively Parallel Fluidic Design for High-Throughput and Multiplexed Cell Isolation

Journal

ADVANCED MATERIALS TECHNOLOGIES
Volume 5, Issue 5, Pages -

Publisher

WILEY
DOI: 10.1002/admt.201900960

Keywords

flow homogenization; magnetic separation; microfluidics; multiplexed cell separation; rare cell isolation

Funding

  1. Center for Cancer Nanotechnology Excellence [U54CA199075, U54CA151459]
  2. Innovative Molecular Analysis Technologies [R33CA138330]

Ask authors/readers for more resources

Microfluidic devices are widely used for applications such as cell isolation. Currently, the most common method to improve throughput for microfluidic devices involves fabrication of multiple, identical channels in parallel. However, this numbering up only occurs in one dimension, thereby limiting gains in volumetric throughput. In contrast, macrofluidic devices permit high volumetric flow rates but lack the finer control of microfluidics. Here, it is demonstrated how a micropore array design enables flow homogenization across a magnetic cell capture device, thus creating a massively parallel series of microscale flow channels with consistent fluidic and magnetic properties, regardless of spatial location. This design enables scaling in two dimensions, allowing flow rates exceeding 100 mL h(-1) while maintaining >90% capture efficiencies of spiked lung cancer cells from blood in a simulated circulating tumor cell system. Additionally, this design facilitates modularity in operation, which is demonstrated by combining two different devices in tandem for multiplexed cell separation in a single pass with no additional cell losses from processing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available