4.7 Article

Network Mapping of Connectivity Alterations in Disorder of Consciousness: Towards Targeted Neuromodulation

Journal

JOURNAL OF CLINICAL MEDICINE
Volume 9, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/jcm9030828

Keywords

disorder of consciousness; brain networks; neuroimaging; neuromodulation; brain stimulation; network mapping; default mode network; connectivity; fMRI; tDCS; tES

Funding

  1. Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) [2014- 13121700007]
  2. Beth Israel Deaconess Medical Center (BIDMC)
  3. Defence Advanced Research Projects Agency (DARPA) [HR001117S0030]
  4. NIH [P01 AG031720-06A1, R01 MH117063-01, R01 AG060981-01]
  5. European FET Open project Luminous (European Union's Horizon 2020 research and innovation programme) [686764]

Ask authors/readers for more resources

Disorder of consciousness (DoC) refers to a group of clinical conditions that may emerge after brain injury, characterized by a varying decrease in the level of consciousness that can last from days to years. An understanding of its neural correlates is crucial for the conceptualization and application of effective therapeutic interventions. Here we propose a quantitative meta-analysis of the neural substrate of DoC emerging from functional magnetic resonance (fMRI) and positron emission tomography (PET) studies. We also map the relevant networks of resulting areas to highlight similarities with Resting State Networks (RSNs) and hypothesize potential therapeutic solutions leveraging network-targeted noninvasive brain stimulation. Available literature was reviewed and analyzed through the activation likelihood estimate (ALE) statistical framework to describe resting-state or task-dependent brain activation patterns in DoC patients. Results show that task-related activity is limited to temporal regions resembling the auditory cortex, whereas resting-state fMRI data reveal a diffuse decreased activation affecting two subgroups of cortical (angular gyrus, middle frontal gyrus) and subcortical (thalamus, cingulate cortex, caudate nucleus) regions. Clustering of their cortical functional connectivity projections identify two main altered functional networks, related to decreased activity of (i) the default mode and frontoparietal networks, as well as (ii) the anterior salience and visual/auditory networks. Based on the strength and topography of their connectivity profile, biophysical modeling of potential brain stimulation solutions suggests the first network as the most feasible target for tES, tDCS neuromodulation in DoC patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available