4.8 Article

Three-dimensional vectorial holography based on machine learning inverse design

Journal

SCIENCE ADVANCES
Volume 6, Issue 16, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aaz4261

Keywords

-

Funding

  1. Australian Research Council (ARC) [DP180102402]
  2. Victoria Fellowship
  3. Alexander von Humboldt Foundation

Ask authors/readers for more resources

The three-dimensional (3D) vectorial nature of electromagnetic waves of light has not only played a fundamental role in science but also driven disruptive applications in optical display, microscopy, and manipulation. However, conventional optical holography can address only the amplitude and phase information of an optical beam, leaving the 3D vectorial feature of light completely inaccessible. We demonstrate 3D vectorial holography where an arbitrary 3D vectorial field distribution on a wavefront can be precisely reconstructed using the machine learning inverse design based on multilayer perceptron artificial neural networks. This 3D vectorial holography allows the lensless reconstruction of a 3D vectorial holographic image with an ultrawide viewing angle of 94 degrees and a high diffraction efficiency of 78%, necessary for floating displays. The results provide an artificial intelligence-enabled holographic paradigm for harnessing the vectorial nature of light, enabling new machine learning strategies for holographic 3D vectorial fields multiplexing in display and encryption.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available