4.4 Article

Design and analysis of a novel long-distance double tendon-sheath transmission device for breast intervention robots under MRI field

Journal

ADVANCES IN MECHANICAL ENGINEERING
Volume 12, Issue 3, Pages -

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/1687814020904565

Keywords

Double tendon-sheath; large-stroke transmission model; LeBus grooves; breast intervention robot; MRI; transmission device; friction model

Funding

  1. National Natural Science Foundation of China [51675142]
  2. Natural Science Foundation of Heilongjiang Province [ZD2018013]

Ask authors/readers for more resources

Cancer represents a major threat to human health. Magnetic resonance imaging (MRI) provides superior performance to other imaging-based examination methods in the detection of tumors and offers distinct advantages in biopsy and seed implantation. However, because of the MRI environment, the material requirements for actuating devices for the medical robots used in MRI are incredibly demanding. This paper describes a novel double tendon-sheath transmission device for use in MRI applications. LeBus grooves are used in the original transmission wheels, thus enabling the system to realize long-distance and large-stroke transmission with improved accuracy. The friction model of the transmission system and the transmission characteristics model of the novel tendon-sheath structure are then established. To address the problem that tension sensors cannot be installed in large-stroke transmission systems, a three-point force measurement method is used to measure and set an appropriate preload in the novel tendon-sheath transmission system. Additionally, experiments are conducted to verify the accuracy of the theoretical model and multiple groups of tests are performed to explore the transmission characteristics. Finally, the novel tendon-sheath transmission system is compensated to improve its accuracy and the experimental results acquired after compensation show that the system satisfies the design requirements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available