4.6 Article

Properties of Graphene-Thermoplastic Polyurethane Flexible Conductive Film

Journal

COATINGS
Volume 10, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/coatings10040400

Keywords

thermoplastic polyurethane; graphene; electrical conductivity; thermal conductivity; electrothermal response

Funding

  1. National Natural Science Foundation of China [61671140]
  2. Zhongshan Science and Technology Projects [2017A1016, 2018SYF10]
  3. Guangdong Climbing Program [pdjh2020a0736]

Ask authors/readers for more resources

Flexible conductive films were prepared via a convenient blending method with thermoplastic polyurethane (TPU) as matrix and nanocrystalline cellulose (NCC) modified chemically reduced graphene oxide (RGO/NCC) as the conductive fillers. The relationships between the electrical and thermal properties as well as the tensile strength and electrothermal response performance of the composite film and the mass content of reduced graphene oxide (RGO) and the initial TPU concentration were systematically investigated. The experimental results show that the resistivity of the composite film with the mass content of RGO/NCC of 7 wt% and an initial TPU concentration of 20 wt% is the minimum of 8.1 UOmega;. However, the thermal conductivity of composite film with mass content of RGO/NCC of 5 wt% and the initial TPU concentration of 30 wt% reaches a maximum of 0.3464 W, which is an increase of 56% compared with pure TPU. The tensile strength of the composite films with mass contents of RGO of 3 wt% prepared with the initial TPU concentrations of 20 wt% reaches the maximum of 43.2 MPa, which increases by a factor of 1.5 (the tensile strength of the pure TPU is 28.9 MPa). The composite conductive film has a fast electrothermal response. Furthermore, superhydrophobic composite conductive films were prepared by immersing the composite conductive film into fluorinated decyl polyhedral oligomeric silsesquioxane (F-POSS) ethanol solution. The water contact angle of the superhydrophobic composite conductive film reaches 158.19 degrees and the resistivity of the superhydrophobic composite film slightly increases and still has good conductivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available