4.6 Article

Performance on Bone Regeneration of a Silver Nanoparticle Delivery System Based on Natural Rubber Membrane NRL-AgNP

Journal

COATINGS
Volume 10, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/coatings10040323

Keywords

nanoparticles; bone tissue engineering; silver; membrane; bone regeneration

Funding

  1. Brazilian agency Fundacao de Amparo a Pesquisa do Estado de Sao Paulo [FAPESP 03/09505-6]
  2. Brazilian agency Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)
  3. Brazilian agency Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)

Ask authors/readers for more resources

NRL-AgNP was developed bringing important properties of natural rubber as occlusive membrane with antimicrobial activity of silver nanoparticles. Biological aspects, such as cell viability, tissue reaction, and occlusive membrane performance of NRL-AgNP, are presented. In addition, in vivo degradation was investigated by Fourier Transform Infrared Spectroscopy (FTIR). The cell viability test was performed in mesenchymal stem cells of human deciduous dental pulp seeded with the new material. Tissue reaction was tested through subcutaneous implant of NRL-AgNP and compared to Polytetrafluoroethylene (PTFE) at the dorsum of rats. The performance of the NRL-AgNP as an occlusive membrane in Guided Bone Regeneration (GBR) was tested in full thickness critical size bone defects (8 mm) in rat calvaria. Cell viability was 98.8% for NRL-AgNP and did not result in statistically significant differences compared to negative control (p > 0.05 Kruskal-Wallis). All materials presented similar tissue reaction (p > 0.05). In the GBR experiment, the defects covered with NRL-AgNP presented a more advanced stage of bone regeneration in comparison with non-treated defects. The FTIR spectra of NRL-AgNP before and after implantation showed no degradation of NRL-AgNP membranes. These results are in favor of the NRL-AgNP use as an occlusive membrane for GBR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available