4.7 Article

Induced Ferromagnetic Order of Graphdiyne Semiconductors by Introducing a Heteroatom

Journal

ACS CENTRAL SCIENCE
Volume 6, Issue 6, Pages 950-958

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acscentsci.0c00348

Keywords

-

Funding

  1. National Natural Science Foundation of China [51802324, 21790050, 21790051, 51822208, 21771187]
  2. Frontier Science Research Project of the Chinese Academy of Sciences [QYZDB-SSW-JSC052]
  3. Taishan Scholars Program of Shandong Province [tsqn201812111]

Ask authors/readers for more resources

To date, the realization of ferromagnetism in two-dimensional carbon semiconductors containing only sp electrons has remained a challenge for spintronics. Here, we utilize the atomic-level functionalization strategy to obtain three carbon matrix materials by accurately introducing different light elements (H, F, Cl) into graphdiyne's benzene ring. Their magnetic and conductive characteristics are thoroughly clarified via physical property measurements and DFT calculations. All of these carbon matrix materials retain their excellent intrinsic semiconductor properties. In particular, compared with the paramagnetism of HsGDY and ClsGDY, a robust ferromagnetic ordering as well as high mobility of up to 320 cm(2) V-1 s(-1) was observed in FsGDY, successfully realizing a ferromagnetic semiconductor. Through theory calculations, this unique ferromagnetic coupling can be attributed to the most striking charge transfer between carbon and fluorine atoms, demonstrating the advantages of controllable fabrication. These results not only reveal the important role of atomic-scale doping/substitution in optimizing graphdiyne material but also create new possibilities for manipulating spins and charges in 2D carbon materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available