4.4 Article

Role of nitric oxide and reactive oxygen species in static magnetic field pre-treatment induced tolerance to ambient UV-B stress in soybean

Journal

PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS
Volume 26, Issue 5, Pages 931-945

Publisher

SPRINGER
DOI: 10.1007/s12298-020-00802-5

Keywords

Abiotic stress; Chl a fluorescence; Carbonic anhydrase; Nitrogenase; UV-B; Specific leaf weight; Yield

Categories

Funding

  1. Department of Science and Technology, New Delhi, Women Scientists Scheme-A [DST/SR/WOS-A/LS-17/2017]

Ask authors/readers for more resources

The experiments were conducted for the estimation of the mitigating effect of the static magnetic field (SMF of 200 mT for 1 h) treatment on soybean under ambient UV-B stress. The SMF treated (MT) and untreated (UT) seeds were grown inside iron cages covered with polyester filters for the purpose to filter UV-A + B (< 400 nm) and UV-B (< 300 nm) radiations, polythene filter control (FC) transparent for UV (280-400 nm), and open controls (OC) were without any filters. Our results indicated that specific leaf weight, efficiency of PS II, activity of carbonic anhydrase (CA) and nitrogenase (NRA), nucleic acid and protein content, nitric oxide (NO) and yield were significantly decreased in plants of untreated seeds under UV-B stress. SMF treatment to the soybean seeds was observed to mitigate the adverse effect of ambient UV-B with a significant enhancement in above-measured parameters in plants when compared with plants of untreated seeds grown under OC/FC conditions. Chlorophyll a fluorescence transition curve (OJIP-curve) from SMF treated and UV excluded plants has shown a higher fluorescence yield especially for I-P phase as compared to the plants grown in ambient UV-B stress. Reduction in the level of superoxide anion radicle (O2 center dot- }}$$\end{document}), hydrogen peroxide (H2O2), malondialdehyde (MDA) and proline content with a remarkable increase in DNA, RNA, protein and NO content, increased photosynthetic efficiency and nitrogen fixation in the leaves of soybean suggested the ameliorating effect of SMF pre-treatment against ambient UV-B induced damage. Consequently, SMF-pretreatment increased the tolerance of soybean seedlings to ambient UV-B stress as compared to the untreated seeds. The increase in carbon and nitrogen fixation ability due to SMF pre-treatment and the omission of solar UV radiation impact can be a direction for the purpose to improve the crop yield. Evaluation of the consequences of SMF treated seeds under ambient UV-B stress, and the plants from untreated seeds under solar UV exclusion indicated parallelism among the two effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available