4.7 Article

Phonon counting thermometry of an ultracoherent membrane resonator near its motional ground state

Journal

OPTICA
Volume 7, Issue 6, Pages 718-725

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OPTICA.390939

Keywords

-

Categories

Funding

  1. Villum Fonden (QMAC)
  2. European Research Council (Advanced Grant QUANTUM-N)
  3. John Templeton Foundation

Ask authors/readers for more resources

The generation of non-Gaussian quantum states of macroscopic mechanical objects is key to a number of challenges in quantum information science, ranging from fundamental tests of decoherence to quantum communication and sensing. Heralded generation of single-phonon states of mechanical motion is an attractive way toward this goal, as it is, in principle, not limited by the object size. Here we demonstrate a technique that allows for generation and detection of a quantum state of motion by phonon counting measurements near the ground state of a 1.5 MHz micromechanical oscillator. We detect scattered photons from a membrane-in-the-middle optomechanical system using an ultra-narrowband optical filter, and perform Raman-ratio thermometry and second-order intensity interferometry near the motional ground state ((n) over bar = 0.23 +/- 0.02 phonons). With an effective mass in the nanogram range, our system lends itself for studies of long-lived non-Gaussian motional states with some of the heaviest objects to date. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available