4.3 Article

Multi-site probe for selective turn-on fluorescent detection of Al(III) in aqueous solution: synthesis, cation binding, mode of coordination, logic gate and cell imaging

Journal

Publisher

IOP Publishing Ltd
DOI: 10.1088/2050-6120/ab823e

Keywords

fluorescence; aluminium; cell imaging; logic gate; coordination

Ask authors/readers for more resources

An easy to make organic probe (hereafter called as R) possessing multiple ligating sites have been synthesized and characterized using spectral techniques. The probe exhibits selective and sensitive turn-on fluorescence response with Al(III) in aqueous dimethylformamide (DMF) (1:1 v/v) solution. Fluorescence titration experiment shows that the probe binds with Al(III) with a 1:1 stoichiometry and a binding constant of 6.6 x 10(4) M-1.The mode of coordination of R with Al(III) has been established suing Al-27 and H-1 NMR studies and the results suggest formation of an octahedral complex been them. The suggested point of attachment of R with Al(III) corroborates well with Density Functional Theory (DFT) optimized structure and Mulliken charges computed. Chelation-enhanced fluorescence (CHEF) is proposed as the mechanism of enhancement of fluorescence upon addition of Al(III) to R. The probe detects Al(III) in aqueous solution with a detection limit of 0.2 mu M, which is much lower than the permissible limit of Al(III) set by the World Health Organization (WHO).The probe works in a wide pH range (4-11) and thus makes it a suitable candidate for environmental and biological applications. The fluorescence signals of R were used to construct an INHIBIT molecular logic gate. The confocal fluorescence microscope experiments show that R could be employed as a fluorescent probe for detecting Al(III) in living cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available