4.2 Article

Accurate classification of ECG arrhythmia using MOWPT enhanced fast compression deep learning networks

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s12652-020-02110-y

Keywords

Electrocardiogram (ECG); Arrhythmia classification; Maximal overlap wavelet packets transform (MOWPT); Fast compression; Convolutional neural networks; Model parameter optimization

Funding

  1. National Natural Science Foundation of China [51605403]
  2. Fundamental Research Funds for the Central Universities [20720190009]
  3. International Science and Technology Cooperation Project of Fujian Province of China [2019I0003]

Ask authors/readers for more resources

Accurate classification of electrocardiogram (ECG) signals is of significant importance for automatic diagnosis of heart diseases. In order to enable intelligent classification of arrhythmias with high accuracy, an accurate classification method based intelligent ECG classifier using the fast compression residual convolutional neural networks (FCResNet) is proposed. In the proposed method, the maximal overlap wavelet packet transform (MOWPT), which provides a comprehensive time-scale paving pattern and possesses the time-invariance property, was utilized for decomposing the original ECG signals into sub-signal samples of different scales. Subsequently, the samples of the five arrhythmia types were utilized as input to the FCResNet such that the ECG arrhythmia types were identified and classified. In the proposed FCResNet model, a fast down-sampling module and several residual block structural units were incorporated. The proposed deep learning classifier can substantially alleviate the problems of low computational efficiency, difficult convergence and model degradation. Parameter optimizations of the FCResNet were investigated via single-factor experiments. The datasets from MIT-BIH arrhythmia database were employed to test the performance of the proposed deep learning classifier. An averaged accuracy of 98.79% was achieved when the number of the wide-stride convolution in fast down-sampling module was set as 2, the batch size parameter was set as 20 and wavelet subspaces of low frequency bands in MOWPT were selected as input of the classifier. These analysis results were compared with those generated by some comparison methods to validate the superiorities and enhancements of the proposed method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available