4.8 Review

Charge Transport in Two-Photon Semiconducting Structures for Solar Fuels

Journal

CHEMSUSCHEM
Volume 9, Issue 20, Pages 2878-2904

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cssc.201600773

Keywords

charge transport; heterojunctions; photosynthesis; semiconductors; solar fuels

Funding

  1. Norwegian Research Council-Independent Projects - Mathematics, Physical Science and Technology (FRINATEK) Programme [231416/F20]
  2. European Economic Area (EEA)-Poland Program [237761]
  3. Nature Science Foundation of China [51576002]
  4. Leading Talent Team in Universities of Anhui Province

Ask authors/readers for more resources

Semiconducting heterostructures are emerging as promising light absorbers and offer effective electron-hole separation to drive solar chemistry. This technology relies on semiconductor composites or photoelectrodes that work in the presence of a redox mediator and that create cascade junctions to promote surface catalytic reactions. Rational tuning of their structures and compositions is crucial to fully exploit their functionality. In this review, we describe the possibilities of applying the two-photon concept to the field of solar fuels. A wide range of strategies including the indirect combination of two semiconductors by a redox couple, direct coupling of two semiconductors, multicomponent structures with a conductive mediator, related photoelectrodes, as well as two-photon cells are discussed for light energy harvesting and charge transport. Examples of charge extraction models from the literature are summarized to understand the mechanism of interfacial carrier dynamics and to rationalize experimental observations. We focus on a working principle of the constituent components and linking the photosynthetic activity with the proposed models. This work gives a new perspective on artificial photosynthesis by taking simultaneous advantages of photon absorption and charge transfer, outlining an encouraging roadmap towards solar fuels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available