4.7 Article

Supported Ultra-Thin Alumina Membranes with Graphene as Efficient Interference Enhanced Raman Scattering Platforms for Sensing

Journal

NANOMATERIALS
Volume 10, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/nano10050830

Keywords

interference; enhanced Raman scattering; alumina membrane; graphene; nanoparticles; optical simulations; AFM; SEM

Funding

  1. Ministerio de Ciencia, Innovacion y Universidades [RTI2018-096918-B-C41, RTI2018-094040-B-I00]
  2. Agency for Management of University and Research Grants (AGAUR) [2017-SGR-1527, BES-2016-076440]
  3. MINECO

Ask authors/readers for more resources

The detection of Raman signals from diluted molecules or biomaterials in complex media is still a challenge. Besides the widely studied Raman enhancement by nanoparticle plasmons, interference mechanisms provide an interesting option. A novel approach for amplification platforms based on supported thin alumina membranes was designed and fabricated to optimize the interference processes. The dielectric layer is the extremely thin alumina membrane itself and, its metallic aluminum support, the reflecting medium. A CVD (chemical vapor deposition) single-layer graphene is transferred on the membrane to serve as substrate to deposit the analyte. Experimental results and simulations of the interference processes were employed to determine the relevant parameters of the structure to optimize the Raman enhancement factor (E.F.). Highly homogeneous E.F. over the platform surface are obtained, typically 370 +/- (5%), for membranes with similar to 100 nm pore depth, similar to 18 nm pore diameter and the complete elimination of the Al2O3 bottom barrier layer. The combined surface enhanced Raman scattering (SERS) and interference amplification is also demonstrated by depositing ultra-small silver nanoparticles. This new approach to amplify the Raman signal of analytes is easily obtained, low-cost and robust with useful enhancement factors (similar to 400) and allows only interference or combined enhancement mechanisms, depending on the analyte requirements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available