4.7 Article

Biogenic-Mediated Synthesis of Mesoporous Cu2O/CuO Nano-Architectures of Superior Catalytic Reductive towards Nitroaromatics

Journal

NANOMATERIALS
Volume 10, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/nano10040781

Keywords

biogenic synthesis; pomegranate seeds extract; Cu2O/CuO nanoparticles; aniline; nitrobenzene reduction

Funding

  1. Jouf University [40/G/02]

Ask authors/readers for more resources

Cu2O/CuO nano-architectures were prepared by biogenic-mediated synthesis using pomegranate seeds extract as the reducing/stabilizing mediator during an aqueous solution combustion process of the Cu2+ precursor. The fabricated Cu2O/CuO nanocomposite were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and nitrogen sorption. Nitrobenzene (NB) was applied a probe to test the catalytic activities of the fabricated Cu2O/CuO nanocomposite. The results indicated that pomegranate seeds extract (PSE) manifest Cu2O/CuO NPs of tiny particle size, larger pore volume and greater surface area compared to the bulky CuO synthesized in the absence of PSE. The surface area and total pore volume of Cu2O/CuO NPs were 20.1 m(2) g(-1) and 0.0362 cm(3) g(-1), respectively. The FESEM image shows the formation of broccoli-like architecture. The fabricated Cu2O/CuO nanocomposite possesses surprising activity towards the reduction of nitro compounds in the presence of NaBH4 into amino compounds with high conversion (94%). The reduction process was performed in water as a green solvent. Over four consecutive cycles the resulting nanocomposite also exhibits outstanding stability. In addition, the resulting Cu2O/CuO nanocomposite suggested herein may encourage scientists to start preparing more cost-effective catalysts for marketing instead of complicated catalysts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available