4.6 Article

Renal Programming by Transient Postnatal Overfeeding: The Role of Senescence Pathways

Journal

FRONTIERS IN PHYSIOLOGY
Volume 11, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fphys.2020.00511

Keywords

programming; overnutrition; postnatal overfeeding; kidney; chronic kidney disease; developmental origins of health and disease

Categories

Funding

  1. WEGH Foundation
  2. Societe Francaise de Neonatologie
  3. Janggen-Pohn Stiftung

Ask authors/readers for more resources

Background Early nutrition influences the risk of chronic kidney diseases (CKDs) development in adulthood. Mechanisms underlying the early programming of altered renal function remain incompletely understood. This study aims at characterizing the role of cell senescence pathways in early programming of CKD after transient postnatal overfeeding. Materials and Methods Reduced litters of 3 mice pups and standard litters of 9 mice pups were obtained to induce overfed animals during lactation and control animals, respectively. Animals were sacrificed at 24 days (weaning) or at 7 months of life (adulthood). Body weight, blood pressure, kidney weight, and glomerular count were assessed in both groups. Senescence pathways were investigated using beta-Galactosidase staining and Western blotting of P16, P21, P53, P-Rb/Rb, and Sirtuin 1 (Sirt1) proteins. Results Early overfed animals had a higher body weight, a higher blood pressure at adulthood, and a higher glomerular number endowment compared to the control group. A higher beta-Galactosidase activity, a significant increase in P53 protein expression (p = 0.0045) and a significant decrease in P-Rb/Rb ratio (p = 0.02), were observed at weaning in animals who underwent early postnatal overfeeding. Protein expression of Sirt1, a protective factor against accelerated stress-induced senescence, was significantly decreased (p = 0.03) at weaning in early overfed animals. Conclusion Early postnatal overfeeding by litter size reduction is associated with increased expression of factors involved in cellular senescence pathways, and decreased expression of Sirt 1 in the mouse kidney at weaning. These alterations may contribute to CKD programming after early postnatal overfeeding.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available