4.3 Article

CANT1 deficiency in a mouse model of Desbuquois dysplasia impairs glycosaminoglycan synthesis and chondrocyte differentiation in growth plate cartilage

Journal

FEBS OPEN BIO
Volume 10, Issue 6, Pages 1096-1103

Publisher

WILEY
DOI: 10.1002/2211-5463.12859

Keywords

CANT1; chondrocyte; Desbuquois dysplasia; extracellular matrix; genome editing; glycosaminoglycan

Funding

  1. Iwate University
  2. National Center for Global Health and Medicine [29-1001]

Ask authors/readers for more resources

Desbuquois dysplasia (DD) type 1 is a rare skeletal dysplasia characterized by a short stature, round face, progressive scoliosis, and joint laxity. The causative gene has been identified as calcium-activated nucleotidase 1 (CANT1), which encodes a nucleotidase that preferentially hydrolyzes UDP to UMP and phosphate. In this study, we generated Cant1 KO mice using CRISPR/Cas9-mediated genome editing. All F0 mice possessing frameshift deletions at both Cant1 alleles exhibited a dwarf phenotype. Germline transmission of the edited allele was confirmed in an F0 heterozygous mouse, and KO mice were generated by crossing of the heterozygous breeding pairs. Cant1 KO mice exhibited skeletal defects, including short stature, thoracic kyphosis, and delta phalanx, all of which are observed in DD type 1 patients. The glycosaminoglycan (GAG) content and extracellular matrix space were reduced in the growth plate cartilage of mutants, and proliferating chondrocytes lost their typical flat shape and became round. Chondrocyte differentiation, especially terminal differentiation to hypertrophic chondrocytes, was impaired in Cant1 KO mice. These findings indicate that CANT1 is involved in the synthesis of GAG and regulation of chondrocyte differentiation in the cartilage and contribute to a better understanding of the pathogenesis of DD type 1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available